Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission

http://engine.scichina.com/publisher/scp/journal/SCLS/63/3/10.1007/s11427-020-1637-5?slug=abstract

The occurrence of concentrated pneumonia cases in Wuhan city, Hubei province of China was first reported on December 30, 2019 by the Wuhan Municipal Health Commission (WHO, 2020). The pneumonia cases were found to be linked to a large seafood and animal market in Wuhan, and measures for sanitation and disinfection were taken swiftly by the local government agency. The Centers for Disease Control and Prevention (CDC) and Chinese health authorities later determined and announced that a novel coronavirus (CoV), denoted as Wuhan CoV, had caused the pneumonia outbreak in Wuhan city (CDC, 2020). Scientists from multiple groups had obtained the virus samples from hospitalized patients (Normile, 2020). The isolated viruses were morphologically identical when observed under electron microscopy.

One genome sequence (WH-Human_1) of the Wuhan CoV was first released on Jan 10, 2020, and subsequently five additional Wuhan CoV genome sequences were released (Zhang, 2020; Shu and McCauley, 2017) (Table S1 in Supporting Information). The current public health emergency partially resembles the emergence of the SARS outbreak in southern China in 2002. Both happened in winter with initial cases linked to exposure to live animals sold at animal markets, and both were caused by previously unknown coronaviruses. As of January 15, 2020, there were more than 40 laboratory-confirmed cases of the novel Wuhan CoV infection with one reported death. Although no obvious evidence of human-to-human transmission was reported, there were exported cases in Hong Kong China, Japan, and Thailand.

Under the current public health emergency, it is imperative to understand the origin and native host(s) of the Wuhan CoV, and to evaluate the public health risk of this novel coronavirus for transmission cross species or between humans. To address these important issues related to this causative agent responsible for the outbreak in Wuhan, we initially compared the genome sequences of the Wuhan CoV to those known to infect humans, namely the SARS-CoV and Middle East Respiratory Syndrome (MERS)-CoV (Cotten et al., 2013). The sequences of the six Wuhan CoV genomes were found to be almost identical (Figure S1A in Supporting Information). When compared to the genomes of SARS-CoV and MERS-CoV, the WH-human_1 genome that was used as representative of the Wuhan CoV, shared a better sequence homology toward the genomes of SARS-CoV than that of MERS-CoV (Figure S1B in Supporting Information). High sequence diversity between Wuhan-human_1 and SARS-CoV_Tor2 was found mainly in ORF1a and spike (S-protein) gene, whereas sequence homology was generally poor between Wuhan-human_1 and MERS-CoV.

To understand the origin of the Wuhan CoV and its genetic relationship with other coronaviruses, we performed phylogenetic analysis on the collection of coronavirus sequences from various sources. The results showed the Wuhan CoVs were clustered together in the phylogenetic tree, which belong to the Betacoronavirus genera (Figure 1A). Betacoronavirus is enveloped, single-stranded RNA virus that infects wild animals, herds and humans, resulting in occasional outbreaks and more often infections without apparent symptoms. The Wuhan CoV cluster is situated with the groups of SARS/SARS-like coronaviruses, with bat coronavirus HKU9-1 as the immediate outgroup. Its inner joint neighbors are SARS or SARS-like coronaviruses, including the human-infecting ones (Figure 1A, marked with red star). Most of the inner joint neighbors and the outgroups were found in various bats as natural hosts, e.g., bat coronaviruses HKU9-1 and HKU3-1 in Rousettus bats and bat coronavirus HKU5-1 in Pipistrellus bats. Thus, bats being the native host of the Wuhan CoV would be the logical and convenient reasoning, though it remains likely there was intermediate host(s) in the transmission cascade from bats to humans. Based on the unique phylogenetic position of the Wuhan CoVs, it is likely that they share with the SARS/SARS-like coronaviruses, a common ancestor that resembles the bat coronavirus HKU9-1. However, frequent recombination events during their evolution may blur their path, evidenced by patches of high-homologous sequences between their genomes (Figure S1B in Supporting Information).

Figure 1

Evolutionary analysis of the coronaviruses and modeling of the Wuhan CoV S-protein interacting with human ACE2. A, Phylogenetic tree of coronaviruses based on full-length genome sequences. The tree was constructed with the Maximum-likelihood method using RAxML with GTRGAMMA as the nucleotide substitution model and 1,000 bootstrap replicates. Only bootstraps ≥50% values are shown as filled circles. The host for each coronavirus is marked with corresponding silhouette. Known human-infecting betacoronaviruses are indicated with a red star. B, Amino acid sequence alignment of the RBD domain of coronavirus S-protein. Residues 442, 472, 479, 487, and 491 (numbered based on SARS-CoV S-protein sequence) are important residues for interaction with human ACE2 molecule. C, Structural modeling of the Wuhan CoV (WH-human_1 as representative) S-protein complexed with human ACE2 molecule. Middle panel: The model of the Wuhan CoV S-protein (brown ribbon) is superimposed with the structural template of the SARS CoV S-protein (light blue ribbon). The protein backbone structure of human ACE2 is represented in magenta ribbon. Left panel: The region is shown for hydrogen bonding interactions between Arg426 in S-protein and Gln325/Glu329 in ACE2. The relevant residues are presented in ball and stick representations. Right panel: The region is shown for hydrogen bonding interactions between Tyr436 in S-protein and Asp38/Gln42 in ACE2.

Overall, there is considerable genetics distance between the Wuhan CoV and the human-infecting SARS-CoV, and even greater distance from MERS-CoV. This observation raised an important question whether the Wuhan CoV adopted the same mechanisms that SARS-CoV or MERS-CoV used for transmission cross species/humans, or involved a new, different mechanism for transmission.

The S-protein of coronavirus is divided into two functional units, S1 and S2. S1 facilitates virus infection by binding to host receptors. It comprises two domains, the N-terminal domain and the C-terminal RBD domain that directly interacts with host receptors (Li, 2012). To investigate the Wuhan CoV and its host interaction, we looked into the RBD domain of its S-protein. The S-protein was known to usually have the most variable amino acid sequences compared to those of ORF1a and ORF1b from coronavirus (Hu et al., 2017). However, despite the overall low homology of the Wuhan CoV S-protein to that of SARS-CoV (Figure S1 in Supporting Information), the Wuhan CoV S-protein had several patches of sequences in the RBD domain having a high homology to that of SARS-CoV_Tor2 and HP03-GZ01 (Figure 1B). The residues at positions 442, 472, 479, 487, and 491 in SARS-CoV S-protein were reported to be at receptor complex interface and considered critical for cross-species and human-to-human transmission of SARS-CoV (Li et al., 2005). Despite the patches of highly conserved regions in the RBD domain of the Wuhan CoV S-protein, four of the five critical residues are not preserved except Tyr491 (Figure 1B). Although the polarity and hydrophobicity of the replacing amino acids are similar, they raised serious questions about whether the Wuhan CoV would infect humans via binding of S-protein to ACE2, and how strong the interaction is for risk of human transmission. Note MERS-CoV S-protein displayed very little homology toward that of SARS-CoV in the RBD domain, due to the different binding target for its S-protein, the human dipeptidyl peptidase 4 (DPP4) (Raj et al., 2013).

To answer the serious questions and assess the risk of human transmission of the Wuhan CoV, we performed structural modeling of its S-protein and evaluated its ability to interact with human ACE2 molecules. Based on the computer-guided homology modeling method, the structural model of the Wuhan CoV S-protein was constructed by Swiss-model using the crystal structure of SARS coronavirus S-protein (PDB accession: 6ACD) as a template (Schwede et al., 2003). Note the amino acid sequence identity between the Wuhan-CoV and SARS-CoV S-proteins is 76.47%. Then according to the crystal structure of SARS-CoV S-protein RBD domain complexed with its receptor ACE2 (PDB code: 2AJF), the 3-D complex structure of the Wuhan CoV S-protein binding to human ACE2 was modeled with structural superimposition and molecular rigid docking (Li et al., 2005) (Figure 1C).

The computational model of the Wuhan CoV S-protein (using the WH-human_1 sequence as representative) showed a Cα RMSD of 1.45 Å on the RBD domain compared to the SARS-CoV S-protein structure (Figure 1C). The binding free energies for the S-protein to human ACE2 binding complexes were calculated by MOE 2019 with amber ff14SB force field parameters (Maier et al., 2015). The binding free energy between the Wuhan CoV S-protein and human ACE2 was –50.6 kcal mol–1, whereas that between SARS-CoV S-protein and ACE2 was –78.6 kcal mol–1. A value of –10 kcal mol–1 is usually considered significant. Because of the loss of hydrogen bond interactions due to replacing Arg426 with Asn426 in the Wuhan CoV S-protein, the binding free energy for the Wuhan CoV S-protein increased by 28 kcal mol–1 when compared to the SARS-CoV S-protein binding. Although comparably weaker, the Wuhan CoV S-protein is regarded to have strong binding affinity to human ACE2. So to our surprise, despite replacing four out of five important interface amino acid residues, the Wuhan CoV S-protein was found to have a significant binding affinity to human ACE2. Looking more closely, the replacing residues at positions 442, 472, 479, and 487 in the Wuhan CoV S-protein did not alter the structural confirmation. The Wuhan CoV S-protein and SARS-CoV S-protein shared an almost identical 3-D structure in the RBD domain, thus maintaining similar van der Waals and electrostatic properties in the interaction interface.

In summary, our analysis showed that the Wuhan CoV shared with the SARS/SARS-like coronaviruses a common ancestor that resembles the bat coronavirus HKU9-1. Our work points to the important discovery that the RBD domain of the Wuhan CoV S-protein supports strong interaction with human ACE2 molecules despite its sequence diversity with SARS-CoV S-protein. Thus the Wuhan CoV poses a significant public health risk for human transmission via the S-protein–ACE2 binding pathway. People also need to be reminded that risk and dynamic of cross-species or human-to-human transmission of coronaviruses are also affected by many other factors, like the host’s immune response, viral replication efficiency, or virus mutation rate.

The world’s largest composite cable-saddle bridge Xiangli Expressway Tiger Leaping Gorge Jinshajiang Bridge

世界上最大的複合索鞍——香麗高速虎跳峽金沙江特大橋複合索鞍安裝完成。至此,香麗高速虎跳峽金沙江特大橋2套主索鞍、2個散索鞍、2個複合索鞍全部安裝到位,大橋即將進入主纜安裝施工。

Image may contain: sky, cloud, mountain, bridge, outdoor and nature
Image may contain: mountain, sky, outdoor and nature
Image may contain: mountain, bridge, sky, outdoor and nature, text that says 'WWW.NEWS.C NEWS CN'
Image may contain: mountain, bridge, sky, outdoor and nature


The two sides of the bridge were joined together on Monday. With a total length of 1,017 meters, the bridge is a key project of the construction of the Shangri-La-Lijiang expressway. 

China-Russia highway bridge ready for opening

The first highway bridge connecting #China and #Russia across the Heilongjiang River has recently passed the final acceptance test, the department of transport of Northeast China’s Heilongjiang province said Friday.

Image may contain: sky, bridge, outdoor, nature and water

Experts with Harbin Institute of Technology and counterparts of the Russian side participated in the test on Tuesday. The maximum load capacity of the bridge reached 318 tonnes during the test.

Image may contain: bridge, sky and outdoor
Image may contain: sky, bridge, snow, ocean, outdoor, water and nature
Image may contain: sky, snow, outdoor, nature and water

The bridge is expected to open in April, according to the provincial transport department.

Measuring 1,284 meters long and 14.5 meters wide, the bridge across the Heilongjiang River, known in Russia as the Amur River, stretches from Heihe, a border city in Heilongjiang province, to the Russian city of Blagoveshchensk. Two sides of the bridge were joined together on May 31, 2019.

Brazil inaugurates state-of-the-art Chinese built Antarctic base

https://www.facebook.com/XinhuaNewsAgency/videos/593795418069232/?t=19

Brazil inaugurated a brand new state-of-the-art research station in Antarctica this week.

It took eight years and an investment of almost 100 million dollars to build Brazil’s new research station, after the old one was destroyed in a fire in 2012.

This Comandante Ferraz Antarctic Station is entirely new and built by the Chinese company CEIEC, chosen through an international bidding process. 

Myanmar, China ink deals to accelerate Belt and Road as Xi courts an isolated Suu Kyi

https://www.reuters.com/article/us-myanmar-china/myanmar-china-ink-deals-to-accelerate-belt-and-road-as-xi-courts-an-isolated-suu-kyi-idUSKBN1ZH054?feedType=RSS&feedName=worldNews&utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+Reuters%2FworldNews+%28Reuters+World+News%29&fbclid=IwAR0lkT1mkNxGtA1zEswIalzFB_fg0BA6egMBwBsvD4drcVqm_jDLbpstIh0
China and Myanmar inked dozens of deals on Saturday to speed up infrastructure projects in the Southeast Asian nation, as Beijing seeks to cement its hold over a neighbor increasingly isolated by the West.
Xi and Myanmar leader Aung San Suu Kyi signed 33 agreements shoring up key projects that are part of the flagship Belt and Road Initiative.
They agreed to hasten implementation of the China Myanmar Economic Corridor, a giant infrastructure scheme worth billions of dollars, with agreements on railways linking southwestern China to the Indian Ocean, a deep sea-port in conflict-riven Rakhine state, a special economic zone on the border, and a new city project in the commercial capital of Yangon.

Building a bridge span without any support from below

位于乌蒙山区川滇黔交界处的鸡鸣三省大桥全面建成通车。鸡鸣三省大桥位于我国集中连片特困地区乌蒙山区深处,此处渭河与倒流河交汇入赤水河,形成的“Y”字形大峡谷将四川、云南、贵州三省分割开来,每个省的扇形区域都是临崖绝壁,属于地理区位上的交通死角。鸡鸣三省大桥的建成,不仅解决了群众长久以来相互隔绝、相望难相通的历史,还将贯通鸡鸣三省一带独特的峡谷自然风光和红色旅游资源,密切三省之间的经济往来,助推脱贫攻坚。

(社会)(3)鸡鸣三省大桥建成通车

Gahai lake in NW China’s Qinghai

https://www.facebook.com/PeoplesDaily/videos/107894173964761/?t=33

Gahai lake in NW China’s Qinghai attracts more than 20,000 birds to live and transit every year, the rare black-necked cranes are among them. AmazingChina:The Black-necked Crane on the Lakeside of the Plateau

The world’s most dangerous and difficult railroad with a total investment of $270 billion

近日,川藏铁路有限公司注册成立,注册资本高达2000亿元。该公司的成立,也标志着川藏铁路建设再迈出重要一步。

  被称为“史诗级”的川藏铁路属国家“十三五”规划的重点项目,从四川盆地攀上“世界屋脊”,也是继青藏铁路之后,“世界屋脊”通往内地的又一条大动脉。

2019年12月1日,工人在进行拉(萨)林(芝)铁路第二次跨越雅鲁藏布江的铺轨。 图片来源:新华社记者 觉果 摄

  川藏铁路起于成都,经雅安、康定、林芝等地到达拉萨,总投资2700亿元。全线通车后,成都至拉萨的铁路运行时间有望从目前的36小时缩短至13小时。

  川藏铁路有限公司正式成立

  每日经济新闻(微信号:nbdnews)记者查询国家企业信用信息公示系统时注意到,川藏铁路有限公司已于2020年1月10日成立。公司注册资本高达2000亿元,注册地位于西藏自治区林芝市。中国国家铁路集团有限公司(以下简称国铁集团)持有该公司100%股权。

  川藏铁路有限公司的法定代表人为王建盛。记者注意到,早在2019年上半年,王建盛便多次会见四川省多地市(州)的主政官员,就川藏铁路的建设等交换意见。

  在国铁集团所属单位名单上,川藏铁路有限公司被单独列出。

  在1月2日,国铁集团工作会议上,国铁集团董事长、党组书记陆东福多次提及川藏铁路建设。他表示,2019年,国铁集团高质量完成川藏铁路深化可研报告,重点工程初步设计取得阶段性成果,开工准备工作不断深化落实。围绕川藏铁路规划建设,开展系统性重大科研课题研究,形成阶段成果140余项。

  会议强调,新的一年,中国铁路要深入推进《川藏铁路重大科技攻关实施方案》,加强国家川藏铁路技术创新中心建设,编制川藏铁路专项技术标准、管理标准,推动川藏铁路重大科技攻关取得新突破。

 川藏铁路示意图

川藏铁路示意图

  1月14日,国铁集团召开2020年铁路建设工作会议,会上亦提及川藏铁路的建设。陆东福表示,要按照“科学规划、技术支撑、保护生态、安全可靠”的总体思路,积极做好可研批复配合和勘察设计工作,全面做好开工各项准备工作,科学合理安排好施工组织,进一步完善健全各项保障体系,确保川藏铁路规划建设科学扎实推进。

  “史诗级”铁路80%以上穿隧道

  2018年10月10日,中央财经委员会召开会议,研究提高我国自然灾害防治能力和川藏铁路规划建设问题。会议指出,规划建设川藏铁路,对国家长治久安和西藏经济社会发展具有重大而深远的意义,一定把这件大事办成办好。

2019年9月3日央视报道截图

  被称为“史诗级”的川藏铁路属国家“十三五”规划的重点项目,从四川盆地攀上“世界屋脊”,最高海拔4400米左右,经过的地形高差达3000米以上。

  据新华社报道,川藏铁路实行分段建设,东段为成都经雅安至康定,中段为康定至林芝,西段为拉萨至林芝,其中成都至雅安段已于2018年底通车。中铁二院川藏铁路成都至康定段总体设计负责人张红伟说,拉萨至林芝段铁路已于2015年6月底全面开工建设,正线全长435公里,投资概算总额366.74亿元,建设总工期7年;四川康定至西藏林芝段是全线的最后一段,也是最长、最难的一段。

  张红伟说,川藏铁路从建国初期就开始勘察,上世纪90年代就着手选线,但直到2014年才真正开始建设。

20铁路山地灾害防治提供科技支撑的中国科学院水利部成都山地灾害与环境研究所总工程师游勇说,川藏铁路将穿越横断山区及西藏东南部高原、高山峡谷地带,无论是工程建设还是营运都是世界上风险最高的铁路,将是迄今为止人类历史上最具挑战性的铁路建设工程。

  专家说,川藏铁路具有“显著的地形高差”“强烈的板块活动”“频发的山地灾害”和“脆弱的生态环境”四大环境特征。其中,山地灾害是川藏铁路建设面临的主要挑战之一。

  中铁二院高级工程师、川藏铁路副总体设计负责人夏烈说:“川藏铁路八起八伏,80%以上将以隧道和桥梁的方式建设,累计爬升高度达16000多米,相当于征服了两座珠穆朗玛峰的高度。沿线地质条件复杂,如同在艰险的高山峡谷当中修建‘巨型过山车’,是人类铁路建设史上难度最大的超级工程。”

  在2018年8月的一场学术研讨会上,中国工程院副院长、中国科协副主席何华武介绍,为克服地形高差,绕避不良地质,川藏铁路出现了众多埋深大于1000米、长度超过20公里的超深埋超长隧道。

  为何风险这么高,也要迎难而上把这条铁路建成?

  2018年7月,李克强总理在西藏考察,飞抵拉萨贡嘎机场后,直奔山南市川藏铁路拉林段施工现场,考察勘探设计和施工进度。

图片来源:中国政府网

图片来源:中国政府网

  李克强强调,拉林铁路是川藏铁路的重要一段,川藏铁路建成后将成为继青藏铁路之后世界屋脊通往内地的又一条大动脉。它不仅会拉近西藏与内地的空间和发展距离,也会拉近彼此的心理距离。完成这项任务,责任重大、使命光荣,希望你们保质保量把这条铁路建成精品工程,经得起历史检验。

  李克强说,川藏铁路不仅是西藏人民的期盼,也是全国人民的心愿,其投资建设将会带动巨大的经济和社会效益,是我们早已看准、迟早要建的有效投资项目。我国目前发展不平衡,中西部基础设施建设滞后,要加快补齐这个短板,通过扩大有效投资,加快中西部基础设施建设,逐步缩小东中西

近日,川藏铁路有限公司注册成立,注册资本高达2000亿元。该公司的成立,也标志着川藏铁路建设再迈出重要一步。

  被称为“史诗级”的川藏铁路属国家“十三五”规划的重点项目,从四川盆地攀上“世界屋脊”,也是继青藏铁路之后,“世界屋脊”通往内地的又一条大动脉。

 2019年12月1日,工人在进行拉(萨)林(芝)铁路第二次跨越雅鲁藏布江的铺轨。 图片来源:新华社记者 觉果 摄

2019年12月1日,工人在进行拉(萨)林(芝)铁路第二次跨越雅鲁藏布江的铺轨。 图片来源:新华社记者 觉果 摄

  川藏铁路起于成都,经雅安、康定、林芝等地到达拉萨,总投资2700亿元。全线通车后,成都至拉萨的铁路运行时间有望从目前的36小时缩短至13小时。

  川藏铁路有限公司正式成立

  每日经济新闻(微信号:nbdnews)记者查询国家企业信用信息公示系统时注意到,川藏铁路有限公司已于2020年1月10日成立。公司注册资本高达2000亿元,注册地位于西藏自治区林芝市。中国国家铁路集团有限公司(以下简称国铁集团)持有该公司100%股权。

  川藏铁路有限公司的法定代表人为王建盛。记者注意到,早在2019年上半年,王建盛便多次会见四川省多地市(州)的主政官员,就川藏铁路的建设等交换意见。

  在国铁集团所属单位名单上,川藏铁路有限公司被单独列出。

  在1月2日,国铁集团工作会议上,国铁集团董事长、党组书记陆东福多次提及川藏铁路建设。他表示,2019年,国铁集团高质量完成川藏铁路深化可研报告,重点工程初步设计取得阶段性成果,开工准备工作不断深化落实。围绕川藏铁路规划建设,开展系统性重大科研课题研究,形成阶段成果140余项。

  会议强调,新的一年,中国铁路要深入推进《川藏铁路重大科技攻关实施方案》,加强国家川藏铁路技术创新中心建设,编制川藏铁路专项技术标准、管理标准,推动川藏铁路重大科技攻关取得新突破。

 川藏铁路示意图

川藏铁路示意图

  1月14日,国铁集团召开2020年铁路建设工作会议,会上亦提及川藏铁路的建设。陆东福表示,要按照“科学规划、技术支撑、保护生态、安全可靠”的总体思路,积极做好可研批复配合和勘察设计工作,全面做好开工各项准备工作,科学合理安排好施工组织,进一步完善健全各项保障体系,确保川藏铁路规划建设科学扎实推进。

  “史诗级”铁路80%以上穿隧道

  2018年10月10日,中央财经委员会召开会议,研究提高我国自然灾害防治能力和川藏铁路规划建设问题。会议指出,规划建设川藏铁路,对国家长治久安和西藏经济社会发展具有重大而深远的意义,一定把这件大事办成办好。

 2019年9月3日央视报道截图

2019年9月3日央视报道截图

  被称为“史诗级”的川藏铁路属国家“十三五”规划的重点项目,从四川盆地攀上“世界屋脊”,最高海拔4400米左右,经过的地形高差达3000米以上。

  据新华社报道,川藏铁路实行分段建设,东段为成都经雅安至康定,中段为康定至林芝,西段为拉萨至林芝,其中成都至雅安段已于2018年底通车。中铁二院川藏铁路成都至康定段总体设计负责人张红伟说,拉萨至林芝段铁路已于2015年6月底全面开工建设,正线全长435公里,投资概算总额366.74亿元,建设总工期7年;四川康定至西藏林芝段是全线的最后一段,也是最长、最难的一段。

  张红伟说,川藏铁路从建国初期就开始勘察,上世纪90年代就着手选线,但直到2014年才真正开始建设。

 2019年11月2日央视报道截图

2019年11月2日央视报道截图

  为川藏铁路山地灾害防治提供科技支撑的中国科学院水利部成都山地灾害与环境研究所总工程师游勇说,川藏铁路将穿越横断山区及西藏东南部高原、高山峡谷地带,无论是工程建设还是营运都是世界上风险最高的铁路,将是迄今为止人类历史上最具挑战性的铁路建设工程。

  专家说,川藏铁路具有“显著的地形高差”“强烈的板块活动”“频发的山地灾害”和“脆弱的生态环境”四大环境特征。其中,山地灾害是川藏铁路建设面临的主要挑战之一。

  中铁二院高级工程师、川藏铁路副总体设计负责人夏烈说:“川藏铁路八起八伏,80%以上将以隧道和桥梁的方式建设,累计爬升高度达16000多米,相当于征服了两座珠穆朗玛峰的高度。沿线地质条件复杂,如同在艰险的高山峡谷当中修建‘巨型过山车’,是人类铁路建设史上难度最大的超级工程。”

  在2018年8月的一场学术研讨会上,中国工程院副院长、中国科协副主席何华武介绍,为克服地形高差,绕避不良地质,川藏铁路出现了众多埋深大于1000米、长度超过20公里的超深埋超长隧道。

  为何风险这么高,也要迎难而上把这条铁路建成?

  2018年7月,李克强总理在西藏考察,飞抵拉萨贡嘎机场后,直奔山南市川藏铁路拉林段施工现场,考察勘探设计和施工进度。

图片来源:中国政府网

图片来源:中国政府网

  李克强强调,拉林铁路是川藏铁路的重要一段,川藏铁路建成后将成为继青藏铁路之后世界屋脊通往内地的又一条大动脉。它不仅会拉近西藏与内地的空间和发展距离,也会拉近彼此的心理距离。完成这项任务,责任重大、使命光荣,希望你们保质保量把这条铁路建成精品工程,经得起历史检验。

  李克强说,川藏铁路不仅是西藏人民的期盼,也是全国人民的心愿,其投资建设将会带动巨大的经济和社会效益,是我们早已看准、迟早要建的有效投资项目。我国目前发展不平衡,中西部基础设施建设滞后,要加快补齐这个短板,通过扩大有效投资,加快中西部基础设施建设,逐步缩小东中西部发展差距。

部发展差距。